A knowledge management approach to data mining process for business intelligence

نویسندگان

  • Hai Wang
  • Shouhong Wang
چکیده

Purpose – Data mining (DM) has been considered to be a tool of business intelligence (BI) for knowledge discovery. Recent discussions in this field state that DM does not contribute to business in a large-scale. The purpose of this paper is to discuss the importance of business insiders in the process of knowledge development to make DM more relevant to business. Design/methodology/approach – This paper proposes a blog-based model of knowledge sharing system to support the DM process for effective BI. Findings – Through an illustrative case study, the paper has demonstrated the usefulness of the model of knowledge sharing system for DM in the dynamic transformation of explicit and tacit knowledge for BI. DM can be an effective BI tool only when business insiders are involved and organizational knowledge sharing is implemented. Practical implications – The structure of blog-based knowledge sharing systems for DM process can be practically applied to enterprises for BI. Originality/value – The paper suggests that any significant DM process in the BI context must involve data miner centered DM cycle and business insider centered knowledge development cycle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Concept drift detection in business process logs using deep learning

Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...

متن کامل

The application of data mining techniques in manipulated financial statement classification: The case of turkey

Predicting financially false statements to detect frauds in companies has an increasing trend in recent studies. The manipulations in financial statements can be discovered by auditors when related financial records and indicators are analyzed in depth together with the experience of auditors in order to create knowledge to develop a decision support system to classify firms. Auditors may annot...

متن کامل

Modelling Customer Attraction Prediction in Customer Relation Management using Decision Tree: A Data Mining Approach

In Today’s quality- based competitive world, known as knowledge age, customer attraction is of ultimate importance. In respect to the slogan “customer is always right”, customer relation management is the core of an organizational strategy playing an important role in four aspects of customer identification, customer attraction, customer retaining, and customer satisfaction. Commercial organiza...

متن کامل

Data Mining: A Novel Outlook to Explore Knowledge in Health and Medical Sciences

Today medical and Healthcare industry generate loads of diverse data about patients, disease diagnosis, prognosis, management, hospitals’ resources, electronic patient health records, medical devices and etc. Using the most efficient processing and analyzing method for knowledge extraction is a key point to cost-saving in clinical decision making. Data mining, sometimes called data or knowledge...

متن کامل

An ontology-based business intelligence application in a financial knowledge management system

Business intelligence (BI) applications within an enterprise range over enterprise reporting, cube and ad hoc query analysis, statistical analysis, data mining, and proactive report delivery and alerting. The most sophisticated applications of BI are statistical analysis and data mining, which involve mathematical and statistical treatment of data for correlation analysis, trend analysis, hypot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Industrial Management and Data Systems

دوره 108  شماره 

صفحات  -

تاریخ انتشار 2008